Simulating Probabillities, Part 1: Inverse Transform

Simulating Probabilities, Part 2: Monte Carlo

Utility of Money



random. random( )

Since computers are deterministic, true randomness does not exist.

We settle for pseudo-randomness: A sequence that looks random
but is actually deterministically generated

Initialization | edit)

The state needed fora M Twister implementation is an

random. random( ). np.random. random/( ) amayof nvalues of wbits eagf)/ To initialize the array, a w-bit
seed value|is used to supply x; through x, _ , by setting x; to

* returns a float uniformly in [0.0, 1.0) . seeduais-and mereatter seting

with the Mersenne Twister: Xi= % Xy ® (X 5> (W=2)) + i
» 53-bit precision floating point, I Loote — vim osiR peeriy — 701 -
repeats after 2**19937-1 numbers | '||""_/ﬁi G o
© Seed number: X, used to generate | e e o e v s e oo
ireturn: the probability as described in the written pset.

sequence X1, X, ..., Xp, . )/ np. ranidom. sasd{sasd) Remember
_ 'L%’ ke Problem Set 1?7?77



From random. random() to everything else

random. random()
np.random. random()
Generate a random float

in interval [0.0, 1.0)
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Inverse
Transform
Sampling



F (1) = T(Xex

Inverse Transform Sampling | J e—)
Given the ability to generate numbersU~Uni(0,1), how do we generate
another number according to a CDF F? /
: - (B (@)=
X — F (U) 4. :7{:[:_}»515
def F~1the inverse of CDF: FY(a) =b & F(b) = a
Interpret - Generate U~Uni(0,1)

Apply inverse F~'to geta RV X_

= Then X will have CDF F_
Proof: P(X <x)= P(F‘l(U) f x) (our definition of X)
(O W W ?(FEED € rio)
| =P(U < F(x)) (Vx: 0 F(x) < 1)

. 1
%j‘ w_%,_, — F(x) (COFP(U<u)=uif0<u<l)



[nverse Transform Sampling (Continuous)

How do we generate the exponential distribution X~Exp(4)?
* CDF: F(x) =1—e ™ where x > 0 Ed=\—¢ =4

» Compute inverse: log(1 — 1) = fi—.?wa
F~1(u) = - | B
/ 105 ()= }’?L
- '-.m;u--:f},
* Note if U~Uni(0,1), then (1 — U)~Uni(0,1) = =
* Therefore:

* Note: Closed-form inverse may not always exist



[nverse Transform Sampling (Discrete)

X~Poi(A = 3) has CDF F(X = x) as shown:

Tt
1. Generate U~Uni(0,1) I|I 038 -
u=0.7 gae :
2. As x increases, determine first 04 -
F(x)=U )

0.2 -

x =4 A I

o 11
0O 1 2 3

3. Return this value of x 4 5 6 7 8 9 10



Inverse Transform Sampling of the Normal?

How do we generate X~N(0,1)7

Inverse transform sampling: h

o — M. d"! hasno
1. Generate a random probability
u from U~Unif(0,1). analytical solution!

2 Find x such that ®(x) = u_ In other words,
compute x = &1 (u).

Solution Box-Muller Transform  _  (

* Use two uniforms U4y and U, to generate @.
polar coordinates R and @ for a circle @ = ?
Inscribed in 2x2 square centered at (0,0) N T

Candefine X = Rcos0,Y = Rsin® such that 2
X and Y are two independent unit Normals 2

. Q0
- -fn].. 7 [+.].




Direct Transformation [Special Properties]

=
m Approach for normal(0,1):

Consider two standard normal random variables, Z, and Z,,
plotted as a point in the plane: 7o

In polar coordinates:
Z,=Bcos ¢
Z,=Bsin ¢

S
N

B? = 72, + Z?, ~ chi-square distribution with 2 degrees of freedom
= Exp(A = 2). Hence, B = (-21Inuy)"”
The radius B and angle ¢ are mutually independent.

Z, = (~2Inu)"? cos(271u,)

Z, = (-21Inuy)"’* sin(27u, )



Direct Transformation [Special Properties]
Y
m Approach for normal(u, o°):
Generate Z; ~ N(0,1)

Xi=utol

m Approach for lognormal(u, o°)-
Generate X ~ N((u, o°)




Monte Carlo
Methods



Monte Carlo Integration

Monte Carlo methods: randomly sample
repeatedly to obtain a numerical result

* Bootstrap
* Inference in Bayes Nets
» Definite integrals (Monte Carlo integration)

Hit: 59
Thrown: 309

nr

59
2 0191
309




A Monte Carlo method: Rejection Filtering _—

_ .’> Lisa would rename 1o
|dEE| fﬂr X W'th PDF f(x): Qeﬂance Fi|teri‘|1y
* Throw dart at graph of PDF f(x) _

* If dart under f(x): return x
+ Otherwise, repeat throwing darts until one lands under f(x)

/
— 1ag§ # random value from distr of X
150 P def random_x():
125 H“Q? while True:

Z 100 “u = random.random() % HEIGHT
. e —~x = random.random() * WIDTH
0.25 - / \ID H\ if u <= f(x):

0.00 L - - - 3 return X Z:k
aa Y- 04 05 05 B But what if our PDF

has infinite support?
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L 1. o ol
Filtering with infinite support wl Ve \Uﬂ s
Idea for X with PDF f(x) with support —co < x < c0: ‘3;%1

* Suppose we can simulate Y with PDF g(y) (where Y has same support as X)

» If we can find a constant ¢ such that ¢ = f(x)/g(x) for all x, then

def random_x():
while True:
u = random.random() # u ~ Uni(0, 1)

X generate_y() # random value Y =y
if u <= f(x)/(c % g(x)):
return Xx

+ Number of iterations of loop~Geo(1/c)
* Proof of correctness in Ross textbook, 10.2.2



6 (£

Generating Normal Random Variable [EJ C o)
Goal: Simulate Z~N(0,1). ~ o0 < 3 20 gn@;;;
- Suppose we can simulate Y ~Exp(1) with the inverse transform. -
- Let's simulate X = |Z|. which has the same supportas Y. PDF f: f(x) = F g~ x/2
0<x<ow
1. Determine constantc = f(x)/g(x) forall 0 < x < oo:
\ E ~[r— .:'i"'li i
2e Letthis

e
_ '%E —(x-1)2/2
T

(el/? = &)

VRS
fx) _ EE_{IE_EI};'E _ EE—(,\-_-E—EI+1]I.|"3+1,.|"2
H(I) T _"-.r_rl.' T

{complete the square)

=
T be ¢



Generating Normal Random Variable

Goal: Simulate Z~N (0, 1). gly) =e™
« Suppose we can simulate Y ~Exp(1) with the inverse transform. N

2 :
« Let's simulate X = |Z|, which has the same supportas Y. PDF f: f(x) = Fe‘-"f /2
m

D=x <o

——

2 Determine f(x)/(c - g(x))




Generating Normal Random Variable

Goal: Simulate Z~N(0, 1). Hﬂ@;;j
+ Suppose we can simulate Y ~Exp(1) with the inverse transform. -

2 .
- Let’s simulate X = |Z|, which has the same supportas Y. PDF f: f(x) = fe‘r /2
I[8

_ D=<x<wm
2 Im !ement code for |Z]| and Z. fix) —(x-1)2/2

ye 7\ c-glx) c=y2e/m=~132
S N i~

(from last two slides)

# random value from distr of |Z| # random value from distr of 7
def random abs z(): def random z():
while True: abs z = random_abs_z()
u = random.random() # u ~ Uni(@, 1) u = random. random() <
# inverse transform to get x ~ Exp(1) if u < 0.5:
x = —np.log(random. random()) return abs_z <
if u <= np.exp(—(x — 1) %k 2 / 2): else:
return x return —abs z &




Utility of
Money



Recall the probability tree!

P $1,000,000 -1

yes

Buy
ticket?

no



Let’s play a game. What choice would you make?

05 $20
yes
$0 For what value of $X are
0.5 L
Pla you indifferent to
e playing?
A X =23
no = _
$X “Certain Equivalent”™ (CE) 5 X =
C. X=9
D X =10

def Certain equivalent: The value of the game
to you (different for different people)



Utility

0.5 $20,000 U($20,000)

YES
0.5 $0 U($0)

Play?

"o $10,000 U($10,000)

def Utility U(X) is the “value” you derive from X
»  Can be monetary, but often includes intangibles like quality of life,
life expectancy, personal beliefs, etc.



Utility curves

Utility

——Risk Preferring

——Risk Averse

Risk Neutral

» The utility curve
determines your “risk
preference.”

* Risk preference can
be different in
different parts of the
curve

> Dollars



Non-linearity utility of money

Interestingly, these two choices are different for most people:

0.5 $10
yes $0
Play? 0> 0.5 $100,000,000
yes $0
no $2 0.5
Play?
Nno

$20,000,000



Insurance and risk premium 0.5 $20,000

A slightly different game: yes $0
* Expected monetary value (EMV) 0.5
= expected dollar value of game Play?
(here, $10,000)
no $.? 000 (say this
» 5 'ﬂ.E
Risk premium = EMV - CE = $3000 S ot
* How much would you pay (give
up) to avoid risk?

» This is what insurance is all
about.

—$30,000
$0

Insure car?




Exponential utility curves

Many people have exponential
utility curves:

Ulx)=1—e ¥R

* R is your “risk tolerance”

» Larger R = less risk aversion.
Makes utility function more
“linear”

* R = highest value of Y for
which you would play:

|
0.8
0.6
0.4
0.2

0
0 50 100 150 200 230

—10 |
—50
100

0.5 $Y

yes 0.5 —$Y /2

Play?

no $0



How rational are you?

1.
1.00 $1,000,000 $0
$1,000,000
$1,000,000
0
0.01 ¢, $
$5,000,000
$5,000,000

Which option would you choose in each case?
How many of you chose A over B and D over C?



How rational are you?

1.
1.00 $1,000,000 $0
$1,000,000
$1,000,000
0
0.01 $0 $
$5,000,000
0.10 $5,000,000
Choice A preferred: Choice D preferred:
1.00 U(1,000,000) = 089 U(0)+ 0.11 U(1,000,000) <
0.89 U(1,000,000) + 0.01 U(0) 0.90 U(0) 40.10 U(5,000,000)
+0.10 U(5,000,000)




How rational are you?

Choice D preferred:

Choice D preferred: add 0.11 U(1,000,000) <
1.00 U %ﬁ;’ﬂ’ﬂfﬂﬂ, oo 0.89 U(1,000,000) |  0.01U(0)
89 U(1,000,000) + to both sides +0.10 U(5,000,000)

0.01U(0) +

0.10 U(5,000,000)

- subtract 0.89 U(0)
Contradiction??? |

= from both sides
Choice A preferred: Choice D preferred:
1.00 U(1,000,000) > 0.89U(0)+ 0.11U(1,000,000) <
0.89 U(1,000,000) + 0.01 U(0) 0.90 U(0) +0.10 U(5,000,000)
+0.10 U(5,000,000)




How rational are you?

Choice .D nreferred: Choice D preferred:
1.00 U/(1, “L]H 000) < add L‘Jll {] onm -~
0. 0.89 U(1 Y‘
0.89 U(1,000, HLJLH + ' ,000,000) Pa '{BdD
lﬁj' "Il ) (L_H n to both side- kp\“aﬁ Sﬁteﬂt J)
0.10 U(5,000,000) ﬂ;\eﬁ Ay 0"
a0 uﬂ'\ﬁ‘:l matxﬁ
51513 pﬂ\ W ‘JE’
Cnr- L \{'\Gﬂﬂ X A 13 subtract 0.89 U(0)
- N\ ou a beha\ﬂﬂ from both sides
Cho 4 Hﬂmaﬂ_ l-al Dice _
1.00 " 500,000) > IJ:{] -e [: nreferred: |
0.89 U (1 000,000) + 0.01 U(0) {Ly l* o '{.1""'”[1"?]""'[1’?’
+0.10 U(5,000,000) 90 U(0) +0.10 U(5,000,000)
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